THE McEDWARDS GROUP

1025 Hearst-Willits Road Willits, CA 95490 License #743428

Phone: (707) 459-1086

June 25, 2006 Job No. 1078.01.02

Mr. Craig Hunt Water Resources Control Engineer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

> Groundwater Monitoring Results June 2006 7746 North Highway One Little River, California

Fax: (707) 459-1084

Dear Mr. Hunt:

This letter presents monitoring results for June 2006. Groundwater levels were measured in the four monitoring wells and water samples were taken in wells MW-1, MW-3, and MW-4; in the adjacent creek; and in the creek outfall at the ocean. Because a thickness of 0.21 feet of free product as gasoline was measured in well MW-2, this well was not sampled. The wells were opened the day before to allow water levels to equilibrate to atmospheric pressure. Each sampled well was purged of standing water until successive measurements of indicator parameters pH, conductivity, oxygen reduction potential, dissolved oxygen, and temperature differed by less than 5% or until the well dewatered, whichever came first. Following purging, each well was let stand for at least two hours and then sampled using a disposable bailer. The well purging and sampling record is attached.

Contoured water level elevations for June 11, 2006 are shown on Plate 1. The equivalent water level in well MW-2 was calculated using a specific gravity of gasoline of 0.80. Hydrographs of the water level elevations in the four wells are shown on Plate 2. Water level depths and elevations are shown in Table 1. Water level elevations are relative to an assumed top of casing elevation of 100.00 at well MW-1.

Water samples were analyzed for Total Petroleum Hydrocarbons (TPH) as Diesel; TPH as Motor Oil, TPH as Gasoline; Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX); fuel oxygenates Di-isopropyl Ether (DIPE), Ethyl tert-Butyl Ether (ETBE), Methyl tert-Butyl Ether (MTBE), tert-Amyl Methyl Ether (TAME), and tert-Butanol (TB); and lead scavengers 1,2-Dichoromethane (EDB) and 1,2-Dichloroethane (1,2-DCA). Concentrations of TPH as Gasoline for June 2006 are contoured on Plate 3. Analytical results are tabulated in Table 2.

CONCLUSIONS AND RECOMMENDATIONS

Plate 1 shows remarkably uniform groundwater flow to the southwest, toward the creek bordering the site on the south. Plate 3 shows gasoline contaminant levels in the four monitoring wells decreases logarithmically to the north. The cencentration of gasoline in well MW-2 due to the presence of free product was taken as 50,000 ug/l based on similar levels of gasoline found in the other wells in March 2006. This contaminant distribution is consistent with a linear source of free product oriented east-west and through the area of well MW-2. No contamination was found in the Creek and Creek Outfall samples.

We trust this is the information you require.

Very Truly Yours, THE McEDWARDS GROUP

Dougle Strong Warde

Donald G. McEdwards, PhD, CE 28088, EG 1288, HG 153 Principal Hydrogeologist

Attachments:

Water Level Elevation - 06/10/06, Plate 1

Hydrographs of MW-1 through MW-4, Plate 2

TPH as Gasoline - 06/10/06, Plate 3

Table 1 - Water Level Depths and Elevations for Wells at 7746 North Highway One, Little River, California

Table 2 - Analytical Results of Water Samples from Monitoring Wells at

7746 North Highway One, Little River, California Analytical Laboratory Report and Chain-of-Custody form

Well Purging and Sampling Record

cc:

Mr. Eric Van Dyke P.O. Box 341

Little River, CA 95456

Mr. Carl Van Dyke P.O. Box 490

Monte Rio, CA 95462

Mr. Bruce Van Dyke 3493 Meadowlands Lane San Jose, CA 95135

THE McEDWARDS GROUP Consultants and Contractors License No. 743428

Job Number: 1078.01.02

Water Level Contours - 06/10/06 7746 North Highway One Little River, California PLATE

THE McEDWARDS GROUP Consultants and Contractors License No. 743428

Job Number: 1078.01.02

Hydrographs of MW-1 through MW-4 7746 North Highway One Little River, California

2

QTR.P2

THE McEDWARDS GROUP Consultants and Contractors License No. 743428

TPH as Gasoline - 06/10/06 7746 North Highway One Little River, California PLATE

Job Number: 1078.01.02

QTR.P3

Table 1 - Water Level Depths and Elevations for Wells at 7746 North Highway One, Little River, California

	TOC	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
	Elevation		09/04/04		12/02/04		03/14/05		06/10/05
MW-1	100.00	9.76	90.24	9.16	90.84	8.05	91.95	7.92	92.08
MW-2	99.27	17.29	81.98	16.22	83.05	15.68	83.59	14.70	84.57
MW-3	98.88	14.30	84.58	13.49	85.39	12.50	86.38	11.85	87.03
MW-4	100.74	8.96	91.78	8.41	92.33	7.20	93.54	6.89	93.85
		Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
			09/08/05		12/19/05		03/11/06		06/10/06
MW-1	100.00	9.29	90.71	8.26	91.74	6.65	93.35	8.05	91.95
MW-2	99.27	16.97	82.30	12.79	86.48	14.13	85.14	16.00	83.27
MW-3	98.88	13.98	84.90	12.36	86.52	10.99	87.89	12.88	86.00

Table 2 - Analytical Results of Water Samples from Monitoring Wells at 7746 North Highway One, Little River, California

		LAB NOTES	TPH as DIESEL	TPH as MOTOR OIL	TPH as GASOLINE	BENZENE ug/l	TOLUENE	ETHLY- BENZENE	XYLENES	DIPE	ETBE	МТВЕ	TAME ug/l	ТВ	EDB	1,2-DCA
						ug/i							ид 1			
MW-1	09/04/04	1,2	70	<250	190	40	6.4	2.2	11	< 0.5	< 0.5	14	<0.5	<5.0	< 0.5	1.9
	12/02/04	1,2	68	<250	300	92	11	6.9	5.4	< 0.5	< 0.5	13	< 0.5	<5.0	< 0.5	3.5
	03/14/05	1,2,4	88	<250	330	98	15	11	10	< 0.5	< 0.5	14	<0.5	19	< 0.5	4.7
	06/10/05	1,2,4	73	<250	240	71	15	7.2	11	< 0.5	< 0.5	10	<0.5	7.4	< 0.5	2.7
	09/08/05	1,2,4	71	<250	270	84	9.2	8.2	5.9	< 0.5	<0.5	8.9	<0.5	6.4	< 0.5	2.7
	12/19/05	1,2	5 7	<250	330	88	9.4	7.5	10	< 0.5	< 0.5	5.5	< 0.5	10	< 0.5	4.2
	03/11/06	1,2	88	<250	470	120	24	15	28	<0.5	<0.5	4.0	< 0.5	8.6	<0.5	4.8
	06/10/06	1,2,4	65	<250	270	74	10	0.65	10	<0.5	<0.5	2.6	<0.5	7.0	<0.5	2.5
MW-2	09/04/04	1,2	360	<250	21,000	1300	800	1100	2400	<5.0	<5.0	20	<5.0	110	<5.0	79
	12/02/04	1,2	4000	<250	35,000	2400	2000	1700	4700	< 5.0	<5.0	21	<5.0	<50	<5.0	90
	03/14/05	1,2	5100	<250	35,000	1700	1500	1300	3600	<5.0	<5.0	22	<5.0	160	<5.0	88
	06/10/05	1,2	4300	<250	36,000	2000	1500	1500	3900	<5.0	<5.0	13	<5.0	170	<5.0	87
	09/08/05						pled - ½" Free									
	12/19/05	1,2	5400	<250	37,000	1200	1500	1500	4300	<5.0	<5.0	<5.0	<5.0	70	<5.0	33
	03/11/06	1,2	4600	<250	51,000	2500	2500	2000	6400	<5.0	<5.0	<5.0	<5.0	130	<5.0	67
	06/10/06					Not sam	pled - 2-1/2" Fi	ee Product	-							
MW-3	09/04/04	2	<50	<250	50	0.98	< 0.5	1.2	< 0.5	<0.5	<0.5	<0.5	<0.5	<5.0	< 0.5	12
	12/02/04	2	82	<250	260	4.7	1.1	9.6	2.3	< 0.5	<0.5	0.80	<0.5	6.2	<0.5	34
	03/14/05	2	110	<250	230	3.7	0.77	7.9	2.6	< 0.5	< 0.5	0.55	<0.5	6.3	<0.5	21
	06/10/05	1,2	150	<250	450	6.0	1.8	22	4.0	< 0.5	< 0.5	0.74	< 0.5	6.4	<0.5	25
	09/08/05	1,2	120	<250	460	7.0	1.7	21	4.0	< 0.5	<0.5	0.52	< 0.5	5.1	<0.5	24
	12/19/05	1,2	110	<250	420	5,6	2.0	16	3,0	<0.5	<0.5	0.75	< 0.5	9.2	<0.5	28
	03/11/06	1,2	260	<250	970	11	3,8	25	12	<5.0	<5.0	< 5.0	<5.0	130	<5.0	67
	06/10/06	1,2	260	<250	970	11	4.8	49	13	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	17
MW-4	09/04/04	1,2	1900	<250	4800	2.6	7.3	220	240	<1.0	<1.0	23	<1.0	<10	<1.0	<1.0
	12/02/04	1,3	1200	<250	3800	<5.0	10	180	170	<1.0	<1.0	21	<1.0	<10	<1.0	<1.0
	03/14/05	1,3,4	1600	<250	3800	6.1	7.2	130	110	<1.0	<1.0	20	<0.5	7.4	<1.0	0,55
	06/10/05	1,2	1800	<250	3400	8,5	11	150	130	<0.5	<0.5	28	<0.5	<5.0	<0.5	0.68
	09/08/05	1,2,4	1900	<250	4400	7.1	9.6	210	170	<0.5	< 0.5	23	<0.5	<5.0	<0.5	0.73
	12/19/05	1,2	1400	<250	3300	5.5	7.2	140	120	<0.5	<0.5	22	<0.5	<5,0	< 0.5	0.87
	03/11/06	1,2	1200	<250	3700	8.5	12	110	110	<0.5	<0.5	13	<0.5	<5.0	<0.5	0.52
	06/10/06	1,2	1100	<250	2700	3.8	11	130	130	<0.5	<0.5	13	<0.5	<5.0	<0.5	0.58
Creek	12/19/05		<50	<250	<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	03/11/06		< 50	<250	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	<0.5	< 0.5
	06/10/06		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0,5	<0.5	<5.0	<0.5	<0.5
Creek Outfall	12/19/05		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	03/11/06		< 50	<250	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<5.0	< 0.5	< 0.5
	06/10/06		<50	<250	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<5.0	<0.5	< 0.5

LAB NOTES 1 = Gasoline range compounds are significant for diesel

^{2 =} Unmodified or weakly modified gasoline is significant for gasoline

^{3 =} Heavier gasoline range compounds are significant for gasoline (aged gasoline?)

^{4 =} Diesel range compounds are significant for diesel

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

The McEdwards Group	Client Project ID: #1078.01.02; 7746	Date Sampled: 06/10/06
1025 Hearst-Willits Road	North Highway One	Date Received: 06/14/06
Willits, CA 95490-9743	Client Contact: Don McEdwards	Date Extracted: 06/14/06
Willis, CA 93490-9/43	Client P.O.:	Date Analyzed: 06/15/06

	Diesel (C10-23) and Oil (as Diesel and Motor Oi		
Extraction method: SW351	0C	Analytical met	hods: SW8015C		Work Orde	r: 0606 3 05
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	%SS
0606305-001B	MW-1	w	65,d,b	ND	1	105
0606305-002B	MW-3	w	260,d	ND	1	112
0606305-003B	MW-4	w	1100,d	ND	1	110
0606305-004B	Creek	w	ND	ND	1	104
0606305-005B	Creek Outfall	W	ND	ND	1	116
Reportir	ng Limit for DF =1;	w	50	250		<u></u>

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

The McEdwards Group		Date Sampled: 06/10/06
1025 Hearst-Willits Road	Highway One	Date Received: 06/14/06
William CA 05400 0742	Client Contact: Don McEdwards	Date Extracted: 06/15/06
Willits, CA 95490-9743	Client P.O.:	Date Analyzed: 06/15/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction me	thod: SW5030B		Analy	tical methods: SV	V8021B/8015Cm			Work O	06305	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	w	270,a		74	10	0.65	10	1	110
002A	MW-3	w	970,a		11	4.8	49	13	1	95
003A	MW-4	w	2700,a		3.8	11	130	130	3.3	106
004A	Creek	w	ND		ND	ND	ND	ND	1	101
005A	Creek Outfall	w	ND		ND	ND	ND	ND	1	100
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/1
NUm	eans not detected at or	G	NT A	NTA	NTA	NTA	NIA	NIA	1	(12

i	ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
Į										

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range nontarget isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

The McEdwards Group	,	Date Sampled: 06/10/06
1025 Hearst-Willits Road	North Highway One	Date Received: 06/14/06
William CA 05400 0742	Client Contact: Don McEdwards	Date Extracted: 06/15/06
Willits, CA 95490-9743	Client P.O.:	Date Analyzed: 06/15/06

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Work Order: 0606305 Analytical Method: SW8260B Extraction Method: SW5030B Lab ID 0606305-001C 0606305-002C 0606305-003C 0606305-004C Client ID MW-1 MW-3 MW-4 Creek Reporting Limit for DF =1 Matrix W W w W DF 1 1 1 1 Compound Concentration ug/kg $\mu g/L$ ND ND ND ND NA 0.5 tert-Amyl methyl ether (TAME) t-Butyl alcohol (TBA) 7.0 ND ND NDNA 5.0 ND 1,2-Dibromoethane (EDB) ND ND ND NA 0.5 1,2-Dichloroethane (1,2-DCA) 2.5 17 0.58 ND NA 0.5 Diisopropyl ether (DIPE) ND ND NDND NA 0.5 Ethyl tert-butyl ether (ETBE) ND ND ND ND NA Methyl-t-butyl ether (MTBE) 2.6 ND 13 0.72 NA 0.5 Surrogate Recoveries (%) %SS1: 101 108 107 126 Comments

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

The McEdwards Group		roject ID: #1078	3.01.02; 7746	Date Sampled:	06/10/06		
1025 Hearst-Willits Road	North H	ighway One		Date Received:			
Willits, CA 95490-9743	Client C	ontact: Don McF	Edwards	Date Extracted:	06/15/06		
Willis, CA 95450-9745	Client P.	O.:		Date Analyzed:	06/15/06		
Oxygenated	l Volatile Organ	ics + EDB and 1	,2-DCA by P&	T and GC/MS*			
Extraction Method: SW5030B	An	alytical Method: SW8260	OB	Work Order: 0600			
Lab ID	0606305-005C						
Client ID	Creek Outfall				Reporting		
Matrix	W				DF	=1	
DF	1				S	W	
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND				NA	0.5	
t-Butyl alcohol (TBA)	ND				NA	5.0	
1,2-Dibromoethane (EDB)	ND				NA	0.5	

Surrogate Recoveries (%)

%SS1:	108		
Comments		i	

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND

ND

ND

ND

NA

NA

NA

0.5

0.5

0.5

1,2-Dichloroethane (1,2-DCA)

Diisopropyl ether (DIPE)

Ethyl tert-butyl ether (ETBE)

Methyl-t-butyl ether (MTBE)

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606305

EPA Method: SW8015C Extraction: SW3510C					BatchID: 22167			Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, mary co	µg/L	μg/L % Rec.		% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	101	105	3.90	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	96	100	4.05	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22167 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606305-001B	6/10/06 6:30 PM	6/14/06	6/15/06 6:20 AM	0606305-002B	6/10/06 7:30 PM	6/14/06	6/15/06 7:30 AM
0606305-003B	6/10/06 7:00 PM	6/14/06	6/15/06 8:40 AM	0606305-004B	6/10/06 8:00 PM	6/14/06	6/15/06 1:18 PM
0606305-005B	6/10/06 8:30 PM	6/14/06	6/15/06 2:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606305

EPA Method: SW8021B/80	15Cm E	xtraction	SW5030	В	Batch	hID: 22180)	Spiked Sample ID: 0606300-003A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
TPH(btex) [£]	ND	60	107	106	0.949	108	107	0.971	70 - 130	70 - 130		
MTBE	ND	10	98.5	102	3.71	110	103	6.58	70 - 130	70 - 130		
Benzene	ND	10	99.8	107	7.19	108	102	6.01	70 - 130	70 - 130		
Toluene	ND	10	91	99.6	9.02	101	95.4	6.08	70 - 130	70 - 130		
Ethylbenzene	ND	10	97.5	105	7.27	107	101	5.45	70 - 130	70 - 130		
Xylenes	ND	30	90	95.3	5.76	96	91	5.35	70 - 130	70 - 130		
%SS:	92	10	102	105	2.52	105	100	4.50	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22180 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606305-001A	6/10/06 6:30 PM	6/15/06	6/15/06 1:00 AM	0606305-002A	6/10/06 7:30 PM	6/15/06	6/15/06 1:30 AM
0606305-003A	6/10/06 7:00 PM	6/15/06	6/15/06 7:52 PM	0606305-004A	6/10/06 8:00 PM	6/15/06	6/15/06 1:59 AM
0606305-005A	6/10/06 8:30 PM	6/15/06	6/15/06 2:58 AM	ļ			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606305

EPA Method: SW8260B	SW5030	В	Batcl	hID: 22184		Spiked Sample ID: 0606307-001C					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
ritaryte	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
tert-Amyl methyl ether (TAME)	ND	10	95.9	96.5	0.531	93.7	95.4	1.81	70 - 130	70 - 130	
t-Butyl alcohol (TBA)	ND	50	102	104	2.00	95.8	97.1	1.35	70 - 130	70 - 130	
1,2-Dibromoethane (EDB)	ND	10	104	104	0	101	103	1.10	70 - 130	70 - 130	
1,2-Dichloroethane (1,2-DCA)	ND	10	98.5	98.5	0	97.5	98.2	0.649	7 0 - 130	70 - 130	
Diisopropyl ether (DIPE)	ND	10	104	104	0	103	103	0	70 - 130	70 - 130	
Ethyl tert-butyl ether (ETBE)	ND	10	91.4	91.6	0.257	89.6	90.3	0.787	70 - 130	70 - 130	
Methyl-t-butyl ether (MTBE)	ND	10	93.7	93.1	0.667	89.7	92.1	2.62	70 - 130	70 - 130	
%SS1:	107	10	103	103	0	103	101	2.15	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22184 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606305-001C	6/10/06 6:30 PM	6/15/06	6/15/06 2:19 AM	0606305-002C	6/10/06 7:30 PM	6/15/06	6/15/06 3:02 AM
0606305-003C	6/10/06 7:00 PM	6/15/06	6/15/06 3:45 AM	0606305-004C	6/10/06 8:00 PM	6/15/06	6/15/06 4:28 AM
0606305-005C	6/10/06 8:30 PM	6/15/06	6/15/06 5:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0606305

ClientID: TMG

EDF: YES

Report to:

Don McEdwards
The McEdwards Group

1025 Hearst-Willits Road

TEL: FAX:

PO:

(707) 459-1086

(707) 459-1084

ProjectNo: #1078.01.02; 7746 North Highway One

Willits, CA 95490-9743

Bill to:

Requested TAT:

Don McEdwards

The McEdwards Group 1025 Heasrt-Willits Road

Date Received:

06/14/2006

5 days

Willits, CA 95490-9743

Date Printed:

06/14/2006

									Re	queste	d Test	s (See	egend	belov	w)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2		3	4	5	6	7	8		9	10	11	12
0606305-001	MVV-1	Water	6/10/06 6:30:00 PM		С	Α	_	A	 В		T			T				T
0606305-002	MW-3	Water	6/10/06 7:30:00 PM		С	Α	-	1.000	 В									
0606305-003	MW-4	Water	6/10/06 7:00:00 PM		С	Α	Sec and		В									
0606305-004	Creek	Water	6/10/06 8:00:00 PM		С	Α			В									
0606305-005	Creek Outfall	Water	6/10/06 8:30:00 PM		С	Α			В									

Test Legend:

1 5-OXYS+PBSCV_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(DMO)_W	5
6	7	8	9	10
11	12			

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	Telephon Report to: Donald G The McEdwards Grou 1025 Hearst—Willits I Willits, CA 95490	PACHEC e: 925/798- . McEdward ip Road	AVENUE : CO, CA 94 -1620 is g@insta	SOUT 1553- Facs	H, #D7 -5560 simile: 92 	5/7	981	6 22					Gas (602/8020+8015)	E	DF"	N A	RO NO	UN I	D :	N-(TIME ⊠ YES	: R	O USI	H 2] : 4 5) HR	48		RE(Z	
	Project Number: 10 Project Location: Li Sampler Signature:	78.01.02 ttle River		A A) Z	lame: 7	,							TPH as	as Diesel (8015)	TPH 88 Motor OII (8280)	Five Oxygenates (B280)	KDB and 1,2, DCA (8260)	Volative Organics by	as Stoddard Solvent (8015)						1						
	Sample ID	Date	Time	No		Water	Soil	Air.	Othe	9 5	HNOS	Other	BLE	THE	TPH	Five	EDB	Vola	HALL									c	omme	ents	
£	MW-1	6/10/6		4	VOA	х		\top		x y	1		x			x	х			7						\top	1				
+	**	,,	11	1	Liter	x		1		x 3		1		x	x						1			_		1	\top				**************************************
	-MW-2-			4	VOA	x			3	x x	ζ .	1	x		-	x	x				T							02	o of the contract of	0	
-	One approximation	7.7	71	1	Liter	x				x >				x	x						T				\top			NOT.	SA	APRI	(2)
	MW-3		1930	4	VOA	x		T		x 3	-		x			х	x										\top				
~	11	71	1)	1	Liter	-		\top		K 3				x	x												\top				
-	MW-4		1900	4	VOA	x		1		K X			x	1		x	x				1			1			1				
۱ ٔ	11	11	f 7	1	Liter	x			7	K 3				ж	x												T				
	CREEK		2000	4	VOA	x			7	K X	2		x			x	x										\top	.,	, ,,		
-	11	11	řt	1	Liter	x			7	K 3				x	х																- In Land Spirit
-	CREEK OUTFALL		2030	4	VOA	x			3				x			x	x				1										
١ [**	11	71	1	Liter	x			3	K 3				x	x																
										T	T																				
										T		T																			
											1																		and the Language of the		
										1																					
							\top	T																		T					
								1	1	\top	_										1						1				
ĺ										1							1			1	1						1	AND THE PERSON NAMED IN COLUMN		and the same of th	
									1	1																	1			***************************************	
	delinguished by:	Date College Co	Time SACO Time	Receive	-								(TIDY			E. eres			PI	RESE	RVA	TION)AS	0 & 0	3 M	etals	OTHER
I	clingulahed by:		CARANT Time	Receive	ed by:			<u> </u>	<u> </u>				F	IEAI	SP.	ACE	ABS		AB_	E Server	. s. min	Al	PRO	PRI.		CONT		ERS	, and the second		

REC'D SEALED & INTACT VIA CLO

Well Purging and Sampling Record
The McEdwards Group, 1025 Hearst-Willits Road, Willits, CA 95490
Tel: 707/459-1086 Fax: 707/459-1084
Field work done by Donald G. McEdwards

	Site Nan	ne <u>/ /4</u>	6 N	. 4V	141	Proje	ct No. 💯	578.0	<u>LOZ</u> Da	te 6/1	46	
	Five o	easing volum	nes (5CV) =	water colu	ımn (WC) in ft *	0.816 (5/6	5) gal/ft for 2	2" well [3.26	5(10/3) ga	1/ft for 4" w	ell]	F F.F.
									158	370	WAT	K
	,	سده	0 ne		56cv <u>/5.8</u> 5	ļ	0		0.21	RE	E PR	CODUC
		ZS WL°			560 <u>75.</u> a.	MW	∠ Depth ²	WLº	V	VC*-0	_5CV	
Gal	pH 1 ma	Cond	<u>ORP</u>	DO	Temp	Gal	<u>pH</u>	Cond	ORP	$\frac{DO}{1}$	1emp	
4	6.12	502	-43 -28	0.76	172			VOT	SA	010	15	
6	6.64	519	-28	0.62	17.7			1				
2	6.62	198 198 194	-52	0.68	17.4				· · · · · · · · · · · · · · · · · · ·			
12	6.66	394	-21	8.91	17.1				man or of days march his to		and the second second second second	
		1						100 Aug	Security and a security of the			
Purg	ged Gallons	s: <u>12</u>	Time S	ampled	1830	Purgeo	d Gallons:	Ti	ime Samp	led		
MWA	3 Dantha 2	25 W/I b	12.86	7Ca-1/29	25CV 9.88	MXX	4 Dentha	25 W/1 b	7.20	IC2-b/ 78	B cv <u>14.</u>	52
Gal						Gal	pH pH	Cond	ORP	<u>DO</u>	<u>Temp</u>	
Gal	060	55!	-6	0.63	16.9	2	6.73	578	-62	0.44	173	
4	6.52	575	-72	0.63	16.8	1	6.66	556	-63	0.48	175	
8	2.30	er@	61/2	0.72	16.0	8	6.65	Cond 578 556 559 566	-63	6.48	17.2	
***************************************						10	6.70	565	-62	0.64	17.2	
** , .						12	6.67	5/2	-62	05/	11.2	
Purge	d Gallons: 4	OLZ Tin	ne Sample	d 49:	50	Purgeo	d Gallons	12 T	me Samp	led 19	00	
							Carrons.		p			
									_		-	
MW_	_ Deptha _	WL ^b	w	Ca-b	5CV	MW_	_ Deptha_	WLb	W	/C ^{a-b}	5CV	-
MW_		WL ^b	w		5CV	MW_	_ Deptha_		W		5CV	-
MW _ <u>Gal</u>	Deptha	WL ^b	ORP W	Ca-b	5CV	MW_	Deptha	WL ^b Cond	ORP W	/C ^{a-b}	5CV	-
MW _ Gal	Depth ^a _pH	WL ^b	ORP W	C ^{2-b}	5CV	MW_	Deptha	WLb	ORP W	/C ^{a-b}	5CV	-
MW _Gal	Deptha_pH Cl	WL ^b Cond	ORP W	Ca-b <u>DO</u>	5CV Temp	MW_Gal	Depth ^a <u>pH</u>	WL ^b	ORP W	/C ^{a-b}	5CV Temp	-
MW Gal	Depth ^a _pH	WL ^b Cond	ORP W	Ca-b <u>DO</u>	5CV Temp	MW_Gal	Depth ^a <u>pH</u>	Cond	ORP W	/C ^{a-b}	5CV Temp	-
MW Gal	Deptha pH	WL ^b Cond Cond	ORP W	Carb	5CV Temp	MW_Gal	Depth ^a pH	Cond	ORP W	/Ca-b <u>D O</u>	5CV Temp	-
MW Gal	Deptha_pH Cl	WL ^b Cond Cond	ORP W	Carb	5CV Temp	MW_Gal	Depth ^a pH	WL ^b	ORP W	/Ca-b <u>D O</u>	5CV Temp	• •
MW Gal	Deptha pH CR	Cond Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	WL ^b	ORP Wine Samp	/Ca-b	5CV Temp	-
MW Gal	Deptha pH CR	Cond Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	Cond T	ORP Wine Samp	/Ca-b	5CV Temp	-
MW Gal	Deptha pH CR	Cond Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	WL ^b	ORP Wine Samp	/Ca-b	5CV Temp	-
MW Gal	Deptha pH CR	Cond Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	WL ^b	ORP Wine Samp	/Ca-b	5CV Temp	-
MW Gal	Deptha pH CR	Cond Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	WL ^b	ORP Wine Samp	/Ca-b	5CV Temp	
MW Gal	Deptha pH CR	Cond Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	WL ^b	ORP Wine Samp	/Ca-b	5CV Temp	
MW Gal	Deptha pH CR	WLb Cond Tir	ORP W	Ca-b <u>DO</u> 200 422 032	5CV Temp	MW_Gal Purgeo	Deptha pH Gallons:	WLb Cond T WLb Cond	ORP Wine Samp	/Ca-b	5CV Temp	-